BillionaireClubCollc
  • News
  • Notifications
  • Shop
  • Cart
  • Media
  • Advertise with Us
  • Profile
  • Groups
  • Games
  • My Story
  • Chat
  • Contact Us
home shop notifications more
Signin
  •  Profile
  •  Sign Out
Skip to content

Billionaire Club Co LLC

Believe It and You Will Achieve It

Primary Menu
  • Home
  • Politics
  • TSR
  • Anime
  • Michael Jordan vs.Lebron James
  • Crypto
  • Soccer
  • Dating
  • Airplanes
  • Forex
  • Tax
  • New Movies Coming Soon
  • Games
  • CRYPTO INSURANCE
  • Sport
  • MEMES
  • K-POP
  • AI
  • The Bahamas
  • Digital NoMad
  • Joke of the Day
  • RapVerse
  • Stocks
  • SPORTS BETTING
  • Glamour
  • Beauty
  • Travel
  • Celebrity Net Worth
  • TMZ
  • Lotto
  • COVD-19
  • Fitness
  • The Bible is REAL
  • OutDoor Activity
  • Lifestyle
  • Culture
  • Boxing
  • Food
  • LGBTQ
  • Poetry
  • Music
  • Misc
  • Open Source
  • NASA
  • Science
  • Natural & Holstict Med
  • Gardening
  • DYI
  • History
  • Art
  • Education
  • Pets
  • Aliens
  • Astrology
  • Farming and LiveStock
  • LAW
  • Fast & Furious
  • Fishing & Hunting
  • Health
  • Credit Repair
  • Grants
  • All things legal
  • Reality TV
  • Africa Today
  • China Today
  • "DUMB SHIT.."
  • CRYPTO INSURANCE

Estimating Novel Class Count in NCD by Leveraging Cluster Validity Indices

:::info
Authors:
(1) Troisemaine Colin, Department of Computer Science, IMT Atlantique, Brest, France., and Orange Labs, Lannion, France;
(2) Reiffers-Masson Alexandre, Department of Computer Science, IMT Atlantique, Brest, France.;
(3) Gosselin Stephane, Orange Labs, Lannion, France;
(4) Lemaire Vincent, Orange Labs, Lannion, France;
(5) Vaton Sandrine, Department of Computer Science, IMT Atlantique, Brest, France.
:::
Table of Links
Abstract and Intro
Related work
Approaches
Hyperparameter optimization
Estimating the number of novel classes
Full training procedure
Experiments
Conclusion
Declarations
References
Appendix A: Additional result metrics
Appendix B: Hyperparameters
Appendix C: Cluster Validity Indices numerical results
Appendix D: NCD k-means centroids convergence study
5 Estimating the number of novel classes
Cluster Validity Indices (CVIs) are commonly used in unsupervised data analysis to estimate the number of clusters and are also applicable to the NCD problem. CVIs are scores that compare the compactness and separation of clusters without the help of external information such as ground truth labels. However, the knowledge from the known classes isn’t used if the CVIs are directly applied to estimate the number of novel classes. Therefore, we propose to apply the CVIs in the latent representation learned by PBN. Projection-based NCD methods such as PBN are designed to create a latent space that emphasizes the relevant features of the known classes. Since these features are shared to some extent with the novel classes, this representation should be better at revealing the clusters we are trying to discover than the original feature space. Consequently, it makes sense that applying the different estimation techniques in the learned latent space should yield better results.
\

\
Some NCD works have also previously attempted to estimate the number of novel classes. For instance, [3] defines a large number of output neurons in their clustering network (e.g. 100). In this case, the clustering network is expected to use only the necessary number of clusters while leaving the remaining output neurons unused. Clusters were counted if they contained more instances than a certain threshold. However, since, with the exception of TabularNCD, the models studied in this paper do not use a clustering network, we will not evaluate this method.
\

\
To select the CVI that we will use for our application, we rely on the results of [33]. Here, the authors conducted an extensive performance evaluation of 30 CVIs. They concluded that the Silhouette, Davies–Bouldin, Calinski–Harabasz and Dunn indices behaved better than other indices in almost all cases. In the experiments, the performance of these 4 indices will be compared, with the addition of the elbow method and the NCD-specific method KM-ACC.
\
:::info
This paper is available on arxiv under CC 4.0 license.
:::
\

Welcome to Billionaire Club Co LLC, your gateway to a brand-new social media experience! Sign up today and dive into over 10,000 fresh daily articles and videos curated just for your enjoyment. Enjoy the ad free experience, unlimited content interactions, and get that coveted blue check verification—all for just $1 a month!

Source link

Share
What's your thought on the article, write a comment
0 Comments
×

Sign In to perform this Activity

Sign in
×

Account Frozen

Your account is frozen. You can still view content but cannot interact with it.

Please go to your settings to update your account status.

Open Profile Settings

Ads

  • Original Billionaire128 Basic Pillow

    $ 26.50
  • Billionaire128 Liquid Gold Flip-Flops

    $ 18.00
  • Billionaire128 Liquid Gold Series Neck Gaiter

    $ 16.50
  • News Social

    • Facebook
    • Twitter
    • Facebook
    • Twitter
    Copyright © 2024 Billionaire Club Co LLC. All rights reserved