BillionaireClubCollc
  • News
  • Notifications
  • Shop
  • Cart
  • Media
  • Advertise with Us
  • Profile
  • Groups
  • Games
  • My Story
  • Chat
  • Contact Us
home shop notifications more
Signin
  •  Profile
  •  Sign Out
Skip to content

Billionaire Club Co LLC

Believe It and You Will Achieve It

Primary Menu
  • Home
  • Politics
  • TSR
  • Anime
  • Michael Jordan vs.Lebron James
  • Crypto
  • Soccer
  • Dating
  • Airplanes
  • Forex
  • Tax
  • New Movies Coming Soon
  • Games
  • CRYPTO INSURANCE
  • Sport
  • MEMES
  • K-POP
  • AI
  • The Bahamas
  • Digital NoMad
  • Joke of the Day
  • RapVerse
  • Stocks
  • SPORTS BETTING
  • Glamour
  • Beauty
  • Travel
  • Celebrity Net Worth
  • TMZ
  • Lotto
  • COVD-19
  • Fitness
  • The Bible is REAL
  • OutDoor Activity
  • Lifestyle
  • Culture
  • Boxing
  • Food
  • LGBTQ
  • Poetry
  • Music
  • Misc
  • Open Source
  • NASA
  • Science
  • Natural & Holstict Med
  • Gardening
  • DYI
  • History
  • Art
  • Education
  • Pets
  • Aliens
  • Astrology
  • Farming and LiveStock
  • LAW
  • Fast & Furious
  • Fishing & Hunting
  • Health
  • Credit Repair
  • Grants
  • All things legal
  • Reality TV
  • Africa Today
  • China Today
  • "DUMB SHIT.."
  • Fast & Furious

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs

Enlarge / An illustration created by OpenAI. (credit: OpenAI)

On Thursday, OpenAI researchers unveiled CriticGPT, a new AI model designed to identify mistakes in code generated by ChatGPT. It aims to enhance the process of making AI systems behave in ways humans want (called "alignment") through Reinforcement Learning from Human Feedback (RLHF), which helps human reviewers make large language model (LLM) outputs more accurate.
As outlined in a new research paper called "LLM Critics Help Catch LLM Bugs," OpenAI created CriticGPT to act as an AI assistant to human trainers who review programming code generated by the ChatGPT AI assistant. CriticGPT—based on the GPT-4 family of LLMS—analyzes the code and points out potential errors, making it easier for humans to spot mistakes that might otherwise go unnoticed. The researchers trained CriticGPT on a dataset of code samples with intentionally inserted bugs, teaching it to recognize and flag various coding errors.

The researchers found that CriticGPT's critiques were preferred by annotators over human critiques in 63 percent of cases involving naturally occurring LLM errors and that human-machine teams using CriticGPT wrote more comprehensive critiques than humans alone while reducing confabulation (hallucination) rates compared to AI-only critiques.
Developing an automated critic

The development of CriticGPT involved training the model on a large number of inputs containing deliberately inserted mistakes. Human trainers were asked to modify code written by ChatGPT, introducing errors and then providing example feedback as if they had discovered these bugs. This process allowed the model to learn how to identify and critique various types of coding errors.Read 6 remaining paragraphs | Comments

Welcome to Billionaire Club Co LLC, your gateway to a brand-new social media experience! Sign up today and dive into over 10,000 fresh daily articles and videos curated just for your enjoyment. Enjoy the ad free experience, unlimited content interactions, and get that coveted blue check verification—all for just $1 a month!

Source link

Share
What's your thought on the article, write a comment
0 Comments
×

Sign In to perform this Activity

Sign in
×

Account Frozen

Your account is frozen. You can still view content but cannot interact with it.

Please go to your settings to update your account status.

Open Profile Settings

Ads

  • Billionaire128 Liquid Gold Men’s Athletic Long Shorts

    $ 40.00
  • Billionaire128 Liquid Gold Yoga Shorts

    $ 30.50
  • Original Billionaire128 Samsung Case

    $ 15.50
  • News Social

    • Facebook
    • Twitter
    • Facebook
    • Twitter
    Copyright © 2024 Billionaire Club Co LLC. All rights reserved